Exercise 2.2.2

- (a) Show that $L(u) = \frac{\partial}{\partial x} \left[K_0(x) \frac{\partial u}{\partial x} \right]$ is a linear operator.
- (b) Show that usually $L(u) = \frac{\partial}{\partial x} \left[K_0(x, u) \frac{\partial u}{\partial x} \right]$ is not a linear operator.

Solution

Part (a)

The aim is to show that

$$L(c_1u_1 + c_2u_2) = c_1L(u_1) + c_2L(u_2)$$

where c_1 and c_2 are arbitrary constants and u_1 and u_2 are solutions to a linear homogeneous equation.

$$\begin{split} L(c_1u_1 + c_2u_2) &= \frac{\partial}{\partial x} \left[K_0(x) \frac{\partial (c_1u_1 + c_2u_2)}{\partial x} \right] \\ &= \frac{\partial}{\partial x} \left[K_0(x) \left(c_1 \frac{\partial u_1}{\partial x} + c_2 \frac{\partial u_2}{\partial x} \right) \right] \\ &= \frac{\partial}{\partial x} \left[c_1 K_0(x) \frac{\partial u_1}{\partial x} + c_2 K_0(x) \frac{\partial u_2}{\partial x} \right] \\ &= c_1 \frac{\partial}{\partial x} \left[K_0(x) \frac{\partial u_1}{\partial x} \right] + c_2 \frac{\partial}{\partial x} \left[K_0(x) \frac{\partial u_2}{\partial x} \right] \\ &= c_1 L(u_1) + c_2 L(u_2) \end{split}$$

Therefore, $L(u) = \frac{\partial}{\partial x} \left[K_0(x) \frac{\partial u}{\partial x} \right]$ is a linear operator.

Part (b)

The aim is to show that

$$L(c_1u_1 + c_2u_2) \neq c_1L(u_1) + c_2L(u_2)$$

where c_1 and c_2 are arbitrary constants and u_1 and u_2 are solutions to a linear homogeneous equation.

$$\begin{split} L(c_1u_1 + c_2u_2) &= \frac{\partial}{\partial x} \left[K_0(x, c_1u_1 + c_2u_2) \frac{\partial(c_1u_1 + c_2u_2)}{\partial x} \right] \\ &= \frac{\partial}{\partial x} \left[K_0(x, c_1u_1 + c_2u_2) \left(c_1 \frac{\partial u_1}{\partial x} + c_2 \frac{\partial u_2}{\partial x} \right) \right] \\ &= \frac{\partial}{\partial x} \left[c_1 K_0(x, c_1u_1 + c_2u_2) \frac{\partial u_1}{\partial x} + c_2 K_0(x, c_1u_1 + c_2u_2) \frac{\partial u_2}{\partial x} \right] \\ &= c_1 \frac{\partial}{\partial x} \left[K_0(x, c_1u_1 + c_2u_2) \frac{\partial u_1}{\partial x} \right] + c_2 \frac{\partial}{\partial x} \left[K_0(x, c_1u_1 + c_2u_2) \frac{\partial u_2}{\partial x} \right] \\ &\neq c_1 L(u_1) + c_2 L(u_2) \end{split}$$

Therefore, $L(u) = \frac{\partial}{\partial x} \left[K_0(x, u) \frac{\partial u}{\partial x} \right]$ is not a linear operator.

www.stemjock.com