Exercise 2.2.2

(a) Show that $L(u)=\frac{\partial}{\partial x}\left[K_{0}(x) \frac{\partial u}{\partial x}\right]$ is a linear operator.
(b) Show that usually $L(u)=\frac{\partial}{\partial x}\left[K_{0}(x, u) \frac{\partial u}{\partial x}\right]$ is not a linear operator.

Solution

Part (a)

The aim is to show that

$$
L\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right),
$$

where c_{1} and c_{2} are arbitrary constants and u_{1} and u_{2} are solutions to a linear homogeneous equation.

$$
\begin{aligned}
L\left(c_{1} u_{1}+c_{2} u_{2}\right) & =\frac{\partial}{\partial x}\left[K_{0}(x) \frac{\partial\left(c_{1} u_{1}+c_{2} u_{2}\right)}{\partial x}\right] \\
& =\frac{\partial}{\partial x}\left[K_{0}(x)\left(c_{1} \frac{\partial u_{1}}{\partial x}+c_{2} \frac{\partial u_{2}}{\partial x}\right)\right] \\
& =\frac{\partial}{\partial x}\left[c_{1} K_{0}(x) \frac{\partial u_{1}}{\partial x}+c_{2} K_{0}(x) \frac{\partial u_{2}}{\partial x}\right] \\
& =c_{1} \frac{\partial}{\partial x}\left[K_{0}(x) \frac{\partial u_{1}}{\partial x}\right]+c_{2} \frac{\partial}{\partial x}\left[K_{0}(x) \frac{\partial u_{2}}{\partial x}\right] \\
& =c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right)
\end{aligned}
$$

Therefore, $L(u)=\frac{\partial}{\partial x}\left[K_{0}(x) \frac{\partial u}{\partial x}\right]$ is a linear operator.

Part (b)

The aim is to show that

$$
L\left(c_{1} u_{1}+c_{2} u_{2}\right) \neq c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right),
$$

where c_{1} and c_{2} are arbitrary constants and u_{1} and u_{2} are solutions to a linear homogeneous equation.

$$
\begin{aligned}
L\left(c_{1} u_{1}+c_{2} u_{2}\right) & =\frac{\partial}{\partial x}\left[K_{0}\left(x, c_{1} u_{1}+c_{2} u_{2}\right) \frac{\partial\left(c_{1} u_{1}+c_{2} u_{2}\right)}{\partial x}\right] \\
& =\frac{\partial}{\partial x}\left[K_{0}\left(x, c_{1} u_{1}+c_{2} u_{2}\right)\left(c_{1} \frac{\partial u_{1}}{\partial x}+c_{2} \frac{\partial u_{2}}{\partial x}\right)\right] \\
& =\frac{\partial}{\partial x}\left[c_{1} K_{0}\left(x, c_{1} u_{1}+c_{2} u_{2}\right) \frac{\partial u_{1}}{\partial x}+c_{2} K_{0}\left(x, c_{1} u_{1}+c_{2} u_{2}\right) \frac{\partial u_{2}}{\partial x}\right] \\
& =c_{1} \frac{\partial}{\partial x}\left[K_{0}\left(x, c_{1} u_{1}+c_{2} u_{2}\right) \frac{\partial u_{1}}{\partial x}\right]+c_{2} \frac{\partial}{\partial x}\left[K_{0}\left(x, c_{1} u_{1}+c_{2} u_{2}\right) \frac{\partial u_{2}}{\partial x}\right] \\
& \neq c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right)
\end{aligned}
$$

Therefore, $L(u)=\frac{\partial}{\partial x}\left[K_{0}(x, u) \frac{\partial u}{\partial x}\right]$ is not a linear operator.

